Part Number Hot Search : 
SC241 FOA5401 2SA1129 XWD4812 C4382 IRF223 C441PE H32S72
Product Description
Full Text Search
 

To Download OP282GP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 a
FEATURES High Slew Rate: 9 V/ s Wide Bandwidth: 4 MHz Low Supply Current: 250 A/Amplifier Low Offset Voltage: 3 mV Low Bias Current: 100 pA Fast Settling Time Common-Mode Range Includes V+ Unity Gain Stable APPLICATIONS Active Filters Fast Amplifiers Integrators Supply Current Monitoring
Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482
PIN CONNECTIONS 8-Lead Narrow-Body SOIC 8-Lead Epoxy DIP (S Suffix) (P Suffix)
OUT A 1 -IN A +IN A V- 2 3 4 8 V+ 7 OUT B OUT A 1 -IN A +IN A V- 2 3 4 OP-482 8 V+ 7 OUT B
OP282
OP282
6 -IN B 5 +IN B
6 -IN B 5 +IN B
14-Lead Epoxy DIP (P Suffix)
OUT A -IN A 1 2 3 4 5 6 7 14 OUT D 13 -IN D 12 +IN D
14-Lead Narrow-Body SOIC (S Suffix)
OUT A -IN A +IN A V+ +IN B -IN B OUT B 1 2 3 4 5 6 7 14 OUT B 13 12 -IN D +IN D V-
GENERAL DESCRIPTION
+IN A V+ +IN B -IN B OUT B
The OP282/OP482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. Slew rate exceeds 7 V/s with supply current under 250 A per amplifier. These unity gain stable amplifiers have a typical gain bandwidth of 4 MHz. The JFET input stage of the OP282/OP482 insures bias current is typically a few picoamps and below 500 pA over the full temperature range. Offset voltage is under 3 mV for the dual and under 4 mV for the quad. With a wide output swing, within 1.5 volts of each supply, low power consumption and high slew rate, the OP282/OP482 are ideal for battery-powered systems or power restricted applications. An input common-mode range that includes the positive supply makes the OP282/OP482 an excellent choice for highside signal conditioning. The OP282/OP482 are specified over the extended industrial temperature range. Both dual and quad amplifiers are available in plastic and ceramic DIP plus SOIC surface mount packages.
OP482
11 V- 10 +IN C 9 8 -IN C OUT C
OP482
11
10 +IN C 9 8 -IN C OUT C
REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703
OP282/OP482-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (@ V =
S
15.0 V, TA = +25 C unless otherwise noted)
Min Typ 0.2 0.2 3 1 -11 70 20 15 Max 3 4.5 4 6 100 500 50 250 +15 Units mV mV mV mV pA pA pA pA V dB V/mV V/mV V/C pA/C V mA mA
Parameter INPUT CHARACTERISTICS Offset Voltage Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Large Signal Voltage Gain Offset Voltage Drift Bias Current Drift OUTPUT CHARACTERISTICS Output Voltage Swing Short Circuit Limit Open-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density
Symbol VOS VOS IB IOS
Conditions OP282 OP282, -40 TA +85C OP482 OP482, -40 TA +85C VCM = 0 V VCM = 0 V, Note 1 VCM = 0 V VCM = 0 V, Note 1 -11 V VCM +15 V, -40 TA +85C RL = 10 k RL = 10 k, -40 TA +85C
CMR AVO VOS/T IB/T VO ISC ZOUT PSRR ISY VS SR BWP tS GBP OO en p-p en in
90
10 8 RL = 10 k Source Sink f = 1 MHz VS = 4.5 V to 18 V, -40 TA +85C VO = 0 V, 40 TA +85C -13.5 3 -8 13.9 13.5 10 -12 200
4.5 7
25 210
316 250 18
V/V A V V/s kHz s MHz Degrees V p-p nV/Hz pA/Hz
RL = 10 k 1% Distortion To 0.01%
9 125 1.6 4 55 1.3 36 0.01
0.1 Hz to 10 Hz f = 1 kHz
NOTE 1 The input bias and offset currents are tested at TA = TJ = +85C. Bias and offset currents are guaranteed but not tested at -40 C. Specifications subject to change without notice.
WAFER TEST LIMITS (@ V =
S
15.0 V, TA = +25 C unless otherwise noted)
Symbol VOS VOS IB IOS CMRR PSRR AVO VO ISY Conditions OP282 OP482 VCM = 0 V VCM = 0 V -11 V VCM +15 V V = 4.5 V to 18 V RL = 10 k RL = 10 k VO = 0 V, RL = Limit 3 4 100 50 -11, +15 70 316 20 13.5 250 Units mV max mV max pA max pA max V min/max dB min V/V V/mV min V min A max
Parameter Offset Voltage Offset Voltage Input Bias Current Input Offset Current Input Voltage Range 1 Common-Mode Rejection Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Range Supply Current/Amplifier
NOTES Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing. 1 Guaranteed by CMR test. Specifications subject to change without notice.
-2-
REV. B
OP282/OP482
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Differential Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . 36 V Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range P, S Packages . . . . . . . . . . . . . . . . . . . . . . -65C to +150C Operating Temperature Range OP282A, OP482A . . . . . . . . . . . . . . . . . . -55C to +125C OP282G, OP482G . . . . . . . . . . . . . . . . . . . -40C to +85C Junction Temperature Range P, S Packages . . . . . . . . . . . . . . . . . . . . . . -65C to +125C Lead Temperature Range (Soldering, 60 sec) . . . . . . +300C Package Type 8-Pin Plastic DIP (P) 8-Pin SOIC (S) 14-Pin Plastic DIP (P) 14-Pin SOIC (S)
2 JA JC
ABSOLUTE MAXIMUM RATINGS
DICE CHARACTERISTICS
Units C/W C/W C/W C/W
OP282 Die Size 0.063 0.060 Inch, 3,780 Sq. Mils
103 158 83 120
43 43 39 36
NOTES 1 For supply voltages less than 18 V, the absolute maximum input voltage is equal to the supply voltage. 2 JA is specified for the worst case conditions, i.e., JA is specified for device in socket for cerdip, P-DIP; JA is specified for device soldered in circuit board for SOIC package.
ORDERING GUIDE Model OP282GP OP282GS OP482GP OP482GS Temperature Range -40C to +85C -40C to +85C -40C to +85C -40C to +85C Package Description 8-Pin Plastic DIP 8-Pin SOIC 14-Pin Plastic DIP 14-Pin SOIC Package Option N-8 SO-8 N-14 SO-14
OP482 Die Size 0.070
0.098 Inch, 6,860 Sq. Mils
REV. B
-3-
OP282/OP482
APPLICATIONS INFORMATION PHASE INVERSION
The OP282 and OP482 are single and dual JFET op amps that have been optimized for high speed at low power. This combination makes these amplifiers excellent choices for battery powered or low power applications requiring above average performance. Applications benefiting from this performance combination include telecom, geophysical exploration, portable medical equipment and navigational instrumentation.
HIGH SIDE SIGNAL CONDITIONING
There are many applications that require the sensing of signals near the positive rail. OP282s and OP482s have been tested and guaranteed over a common-mode range (-11 V VCM +15 V) that includes the positive supply. One application where this is commonly used is in the sensing of power supply currents. This enables it to be used in current sensing applications such as the partial circuit shown in Figure 1. In this circuit, the voltage drop across a low value resistor, such as the 0.1 shown here, is amplified and compared to 7.5 volts. The output can then be used for current limiting.
+15V 0.1 500k 100k 100k
Most JFET-input amplifiers will invert the phase of the input signal if either input exceeds the input common-mode range. For the OP282 and OP482 negative signals in excess of approximately 14 volts will cause phase inversion. The cause of this effect is saturation of the input stage leading to the forwardbiasing of a drain-gate diode. A simple fix for this in noninverting applications is to place a resistor in series with the noninverting input. This limits the amount of current through the forwardbiased diode and prevents the shutting down of the output stage. For the OP282/OP482, a value of 200 k has been found to work. However, this adds a significant amount of noise.
15
10
5
V IN
0
-5
-10 RL -15 -15 -10 -5 0 V OUT 5 10 15
+
100k
1/2 OP282
Figure 2. OP282 Phase Reversal
ACTIVE FILTERS
The OP282 and OP482's wide bandwidth and high slew rates make either an excellent choice for many filter applications.
Figure 1. Phase Inversion
There are many types of active filter configurations, but the four most popular configurations are Butterworth, elliptical, Bessel, and Chebyshev. Each type has a response that is optimized for a given characteristic as shown in Table I.
PROGRAMMABLE STATE-VARIABLE FILTER
Table I.
Type Butterworth Chebyshev Elliptical Bessel (Thompson)
Selectivity Moderate Good Best Poor
Overshoot Good Moderate Poor Best
Phase Nonlinear Linear
Amplitude (Pass Band) Max Flat Equal Ripple Equal Ripple
Amplitude (Stop Band)
Equal Ripple
-4-
REV. B
OP282/OP482
The circuit shown in Figure 3 can be used to accurately program the "Q," the cutoff frequency fC, and the gain of a two pole state-variable filter. OP482s have been used in this design because of their high bandwidths, low power and low noise. This circuit takes only three packages to build because of the quad configuration of the op amps and DACs. The DACs shown are all used in the voltage mode so all values are dependent only on the accuracy of the DAC and not on the absolute values of the DAC's resistive ladders. This make this circuit unusually accurate for a programmable filter. Adjusting DAC 1 changes the signal amplitude across R1; therefore, the DAC attenuation times R1 determines the amount of signal current that charges the integrating capacitor, C1. This cutoff frequency can now be expressed as:
fc = D1 1 2R1C1 256
where D1 is the digital code for the DAC. Gain of this circuit is set by adjusting D3. The gain equation is:
Gain = R4 D 3 R5 256
DAC 2 is used to set the "Q" of the circuit. Adjusting this DAC controls the amount of feedback from the bandpass node to the input summing node. Note that the digital value of the DAC is in the numerator, therefore zero code is not a valid operating point.
Q= R2 256 R3 D2
R7 2k
1/4 DAC8408
VIN R5 2k
R4 2k
1/4 DAC8408
R1 2k
C1 1000pF
+
1/4 DAC8408
R1 2k
C1 1000pF
1/4 OP482
+
1/4 OP482
+
1/4 OP482
+
1/4 OP482
+
1/4 OP482
+
LOW
HIGH PASS
1/4 PASS OP482
R6 2k R3 2k R2 1k
1/4 DAC8408
BANDPASS
1/4 OP482
+
1/4 OP482
+
Figure 3.
REV. B
-5-
OP282/OP482
OP282/OP482 SPICE MACRO MODEL
Figure 4 shows the OP282 SPICE macro model. The model for the OP482 is similar to that of the OP282, but there are some
99 I1
minor changes in the circuit values. Contact ADI for a copy of the latest SPICE model diskette for both listings.
V2 8 4 9 D1
INJ1 2 R2 IOS 1 IN+ CIN 3 EOS R1 5 C2 R3 R4 V3 50 C4 13 11 R6 E2 R7 R8 12 G2 C5 R9 G3 C6 R19 G11 C13 R22 14 19 20 E13 R21 21 C14 6 EREF D2 10 98 J2 G1 7 R5 C3
98 99 D5 ISY G19 R25 23 R23 G15 C15 98 D4 26 27 R26 G17 D7 G18 D8 28 G20 R28 24 V5 VOUT D3 25 V4 D6 R27
29
L5
30
50
Figure 4.
-6-
REV. B
OP282/OP482
OP282 SPICE MACRO MODEL
* Node assignments * noninverting input * inverting input * positive supply * negative supply * output * .SUBCKT OP282 1 2 99 50 30 * * INPUT STAGE & POLE AT 15 MHZ * R1 1 3 5E11 R2 2 3 5E11 R3 5 50 3871.3 R4 6 50 3871.3 CIN 1 2 5E-12 C2 5 6 1.37E-12 I1 99 4 0.1E-3 IOS 1 2 5E-13 EOS 7 1 POLY(1) 21 24 200E-6 1 J1 5 2 4 JX J2 6 7 4 JX * EREF 98 0 24 01 * * GAIN STAGE & POLE AT 124 HZ * R5 9 98 1.16E8 C3 9 98 1.11E-11 G1 98 9 56 2.58E-4 V2 99 8 1.2 V3 10 50 1.2 D1 9 8 DX D2 10 9 DX * * NEGATIVE ZERO AT 4 MHZ * R6 11 12 1E6 R7 12 98 1 C4 11 12 39.8E-15 E2 11 98 9 24 1E6 * * POLE AT 15 MHZ * R8 13 98 1E6 C5 13 98 10.6E-15 G2 98 13 12 24 1E-6 * * POLE AT 15 MHZ * R9 14 98 1E6 C6 14 98 10.6E-15 G3 98 14 13 24 1E-6 * * POLE AT 15 MHZ * R19 19 98 1E6 C13 19 98 10.6E-15 G11 98 19 14 24 1E-6
* * COMMON-MODE GAIN NETWORK WITH ZERO AT 11 KHZ * R21 20 21 1E6 R22 21 98 1 C14 20 21 14.38E-12 E13 98 20 3 24 31.62 * * POLE AT 15 MHZ * R23 23 98 1E6 C15 23 98 10.6E-15 G15 98 23 19 24 1E-6 * * OUTPUT STAGE * R25 24 99 5E6 R26 24 50 5E6 ISY 99 50 107E-6 R27 29 99 700 R28 29 50 700 L5 29 30 1E-8 G17 27 50 23 29 1.43E-3 G18 28 50 29 23 1.43E-3 G19 29 99 99 23 1.43E-3 G20 50 29 23 50 1.43E-3 V4 25 29 2.8 V5 29 26 3.5 D3 23 25 DX D4 26 23 DX D5 99 27 DX D6 99 28 DX D7 50 27 DY D8 50 28 DY * * MODELS USED * .MODEL JX PJF(BETA = 3.34E-4 VTO = -2.000 IS = 3E-12) .MODEL DX D(IS = 1E-15) .MODEL DY D(IS = 1E-15 BV = 50) .ENDS OP282
REV. B
-7-
OP282/OP482
80 TA = +25C VS = 15V 0
35 30
OPEN-LOOP GAIN - V/MV
70
60
45
VS = 15V RL= 10k
OVERSHOOT - %
VS = 15V 60 50 40 30 20 10 0 RL = 2k L VIN = 100mV p-p
AVCL = +1 NEGATIVE EDGE
OPEN-LOOP GAIN - dB
40
90
PHASE - Degrees
25 20 15 10 5
AVCL = +1
POSITIVE EDGE
20
135
0
180
1k
10k
100k
1M
10M
100M
FREQUENCY - Hz
0 25 50 75 -75 -50 -25 TEMPERATURE - C
100 125
0
100 200 300 400 LOAD CAPACITANCE - pF
500
Figure 5. Open-Loop Gain, Phase vs. Frequency
60 50
CLOSED-LOOP GAIN - dB
Figure 8. Open-Loop Gain (V/mV)
Figure 11. Small Signal Overshoot vs. Load Capacitance
1000
25
TA = +25C VS = 15V
- SR 20
SLEW RATE - V/s
INPUT BIAS CURRENT - pA
VS = 15V VCM = 0 100
AVCL= +100 40 30 AVCL = +10 20 10 AVCL = +1 0
15
VS= 15V RL= 10k L CL= 50pF
10
10 + SR 5
1.0
-10 -20 1k
0.1
10k
100k
1M
10M
100M
-75
FREQUENCY - Hz
-50 -25 0 25 50 75 TEMPERATURE -C
100 125
25 50 75 -50 -25 0 TEMPERATURE - C
100 125
Figure 6. Closed-Loop Gain vs. Frequency
60 VS = 15V RL = 10k 55 4.5 50
Figure 9. OP282/OP482 Slew Rate vs. Temperature
80
GAIN BANDWIDTH PRODUCT - MH Z
Figure 12. OP282 Input Bias Current vs. Temperature
1000
70 60 50 40 30 20 10 0
10 100 1k FREQUENCY - Hz
VOLTAGE NOISE DENSITY - nV/
INPUT BIAS CURRENT - pA
PHASE MARGIN - Degrees
VS = 15V T = +25C A
VS = 15V TA = +25C 100
OM 50
GBW 4.0
Hz
10
45
3.5
1
40 0 -75 -50 -25 25 50 75 TEMPERATURE - C
3.0 100 125
10k
0.1 -15
-10 -5 5 10 0 COMMON - MODE VOLTAGE - V
15
Figure 7. OP482 Phase Margin and Gain Bandwidth Product vs. Temperature
Figure 10. Voltage Noise Density vs. Frequency
Figure 13. OP282 Input Bias Current vs. Common-Mode Voltage
-8-
REV. B
OP282/OP482
1.15
RELATIVE SUPPLY CURRENT - ISY
20
OUTPUT VOLTAGE SWING - Volts
600
TA = +25C RL = 10k
1.10 TA = +25C 1.05
15 10
500
TA = +25C VS = 15V AVCL = 1000
IMPEDANCE -
5 0 -5 -10 -15 -20
400
1.00
300
0.95
200 AVCL = 100 AVCL= +10 AVCL= 1
0.90
100
0.85 0 10 5 15 SUPPLY VOLTAGE - Volts 20
0
5
10
15
20
0 100
1k
10k
100k
1M
SUPPLY VOLTAGE - Volts
FREQUENCY - Hz
Figure 14. Relative Supply Current vs. Supply Voltage
1.20
Figure 17. Output Voltage Swing vs. Supply Voltage
16
Figure 20. OP482 Closed-Loop Output Impedance vs. Frequency
100 VS = 15V V = 100mV TA = +25C
ABSOLUTE OUTPUT VOLTAGE - Volts
RELATIVE SUPPLY CURRENT - ISY
1.15 1.10 1.05 1.00 0.95 0.90 0.85
VSUP = 15
14 12 10 8 6 4
TA = +25C VS = 15V
80
+ PSRR
PSRR - dB
POSITIVE SWING
60 - PSRR 40
NEGATIVE SWING
20
0
2 0
0.80 0 -75 -50 -25 25 50 75 TEMPERATURE - C
100 125
100
1k LOAD RESISTANCE -
10k
-20 100
1k
10k
100k
1M
FREQUENCY - Hz
Figure 15. Relative Supply Current vs. Temperature
20
Figure 18. Maximum Output Voltage vs. Load Resistance
30
Figure 21. OP282 Power Supply Rejection Ratio (PSRR) vs. Frequency
100
MAXIMUM OUTPUT SWING - Volts
SHORT CIRCUIT CURRENT - mA
VS = 15V SINK 15
25
TA = +25C VS = 15V AVCL = +1 RL = 10k
80
20
60
VS = 15V VCM = 100mV TA = +25C
10
15
CMRR - dB
10k 100k 1M
40
SOURCE 5
10
20
5
0
0
0 -75 -50 -25 25 50 75 TEMPERATURE - C 100 125
1k
-20 100
1k
10k
100k
1M
FREQUENCY - Hz
FREQUENCY - Hz
Figure 16. OP282/OP482 Short Circuit Current vs. Temperature
Figure 19. Maximum Output Swing vs. Frequency
Figure 22. OP282 Common-Mode Rejection Ratio (CMRR) vs. Frequency
REV. B
-9-
OP282/OP482
280
320
700 600 500 VS = 15V -40C TA +125C 300 x OP482 1200 OP AMPS
240
200
VS = 15V TA= +25C 315 x OP282 (630 OP AMPS )
280 240 200
UNITS
UNITS
160 120
160 120
UNITS
0 4 8 12 16 20 TCVOS - V/C 24 28 32
400 300 200 100 0 0 4 8 12 16 20 24 28 32 TCVOS - V/C
80
80 40 0
0 400 800 1200 1600 2000
40
0 -2000 -1600 -1200 -800 -400
VOS - V
Figure 23. VOS Distribution "P" Package
280
Figure 25. OP282 TCVOS (V/C) Distribution "P" Package
320
Figure 27. OP482 TCVOS Distribution "Z" Package
700 600 500 VS = 15V
240
200
VS = 15V TA = +25C 320 x OP282 (640 OP AMPS)
280 240 200
-40C TA +85C 300 x OP482 1200 OP AMPS
UNITS
UNITS
160 120
120
UNITS
160
400 300 200 100 0
80
80
40
40 0
0 400 800 1200 1600 2000
0 -2000 -1600 -1200 -800 -400
0
4
8
VOS - V
12 16 20 TCVOS - V/C
24
28
32
0
4
8
12
16
20
24
28
32
TCVOS - V/C
Figure 24. VOS Distribution "Z" Package
700 600 500
Figure 26. OP282 TCVOS (V/C) Distribution "Z" Package
700
TA = +25C VS = 15V 300 OP482 1200 OP AMPS
Figure 28. TCVOS Distribution "P" Package
600 500 400 300 200 100 0
TA = +25C VS = 15V 300 OP482 1200 OP AMPS
UNITS
300 200 100 0
-2000 -1600 -1200 -800 -400 0 400 800 1200 1600 2000
UNITS
400
-2000 -1600 -1200 -800 -400
0
400 800 1200 1600 2000
V OS - V
VOS - V
Figure 29. OP482 VOS Distribution "Z" Package
Figure 30. OP482 VOS Distribution "P" Package
-10-
REV. B
OP282/OP482
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
8-Lead Narrow-Body SOIC (S Suffix)
8-Lead Epoxy DIP (P Suffix)
14-Lead Narrow-Body SOIC (S Suffix)
14-Lead Epoxy DIP (P Suffix)
20-Position Chip Carrier (RC Suffix)
REV. B
-11-
-12-
C1597-24-11/91
REV. B
PRINTED IN U.S.A.


▲Up To Search▲   

 
Price & Availability of OP282GP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X